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The Navier-Stokes Limit of the Stationary 
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In this paper we extend recent results on the hydrodynamic Navier-Stokes limit 
of the stationary Boltzmann equation for the flow of a gas of hard spheres in 
a channel in the presence of an external force to the case of a hard inter- 
molecular potential with Grad angular cutoff. We prove the convergence of the 
solution, for small Knudsen numbers, to the Maxwellian with parameters 
solving the corresponding Navier-Stokes equation. In the present case we only 
get polynomial decay of the solution for large velocities, instead of the exponen- 
tial decay which holds for hard spheres. 

KEY WORDS:  Hydrodynamic limit; stationary Navier-Stokes equations; 
kinetic theory. 

1. I N T R O D U C T I O N  

The macroscopic stationary behavior of a Boltzmann gas has been studied 
recentlytl, 2) under special symmetry conditions, corresponding to a one- 
dimensional flow between infinite parallel plates at fixed temperatures 
maintained by a constant external force parallel to the plates. As a result, 
it was proved that the solution of the stationary Boltzmann equation con- 
verges, as the mean free path goes to zero, to a local Maxwellian with 
parameters satisfying the stationary Navier-Stokes equations. 

We refer to refs. 1 and 2 for motivations and general framework and 
recall that the results obtained there were restricted to the case of hard 
spheres. But the transport coefficients in several situations are not correctly 
approximated by the ones corresponding to hard spheres. Then it is natural 
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to try to extend the results of refs. 1 and 2 to more realistic cross sections. 
To remove the restriction to hard spheres, however, we need (at least for 
nonvanishing external forces) nonobvious modifications of the method 
presented in refs. 1 and 2. The reason for this is the following. The natural 
space to deal with this problem is a space of functions decaying exponen- 
tially for large velocities. In this framework, when there is an external force, 
some divergences arise due to the differentiation of the distribution func- 
tion with respect to the velocity. The quadratic form associated with the 
linearized Boltzmann operator in the case of hard spheres is strong enough 
to dominate such diverging terms. In the case of hard intermolecular poten- 
tials the quadratic form is smaller than for hard spheres and is no longer 
sufficient for our purposes. On the other hand, if we consider polynomial 
decay for high velocities, the terms produced by the velocity derivatives are 
uniformly bounded. 

In this paper we take advantage of this remark to deal with hard 
potentials. Namely, we give up the exponential decay of the solution, 
switching to an algebraic framework. The general structure of the method 
is similar to the one used in refs. 1 and 2. We look for a solution in the 
form of a truncated bulk + boundary layer expansion with a remainder. 
The expansion of the solution is the same as in ref. 1, while modifications 
are necessary in the estimate of the remainder. This estimate is based on a 
decomposition into a low-velocity part and a high-velocity part. Of  course 
the first one is not seriously affected by the choice of the decay (exponential 
or algebraic). The most serious changes are for the high-velocity part. In 
fact, to deal with it we need to estimate the collision operator in L2 and L~  
norms with polynomial weights. L~<estimates of this kind were previously 
used in ref. 3 and can be adapted to the present setup. L2-estimates are 
obtained in this paper using similar ideas. They depend on the degree of 
the polynomial weight, in the sense that the bounds contain a good part 
and a bad part. This last part is multiplied by a small factor when the poly- 
nomial has sufficiently high degree. Using such estimates, we can show 
that, if we consider sufficiently fast polynomial decay, we can bound the 
high-velocity part of the remainder in a suitable norm. In this way we 
obtain a solution of the stationary Boltzmann equation converging to the 
Maxwellian with parameters satisfying the stationary Navier-Stokes equa- 
tions for the flow between parallel plates at fixed temperatures, subject to 
an external force parallel to the plates. 

The paper is organized as follows: in Section 2 we briefly state the 
problem and the result. In Section 3 we sketch the method of solution, 
pointing out the differences from ref. 1. Finally, in Section 4 we give the 
estimate for the high-velocity part. We will use several notations introduced 
in ref. 1. 
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2. M A I N  RESULT 

We consider the stationary flow of a Boltzmann gas in a channel per- 
pendicular to the y axis, of size 2e-t in microscopic units, with infinite 
parallel walls at given temperatures T+/> T_, subject to a constant force 
parallel to the walls, say along the x axis, with intensity e2F. This choice 
of the size of the force is dictated by the aim that there is a stationary 
limiting solution. The arguments to justify it are given in ref. 1 and we do 
not repeat them. Assuming the space dependence of the distribution func- 
tion f only on the variable y, we obtain the following boundary value 
problem corresponding to this flow, after rescaling the space variable: 

Of sFOf=l_o(f,f) ,  ( y , v ) e ( _ l ,  1 ) x ~  3 

f ( - 1 ,  v)=~_h4_(v) for v v>0 
(2.1) 

f(1, v)=~+il~r+(v) for vy<O 

f'_ dY l.3dv f(y,v)=m 

The boundary conditions correspond to reflecting particles hitting the 
boundaries randomly with Maxwellian distributions 

/Q+(v) = ~ e -[L'- v•177 (2.2) 
- 2 ~ T - _ +  

normalized so that 

f, Iv,,I J~_+(v) dv = 1 
,yX0 

The coefficients 0c_+ are given by 

i f  vyf( +_l,v) dv (2.3) 0C___= 
J t  ,~ <~0 

and are determined so that the net mass current at the walls vanishes. U_+ 
are two vecto~'s parallel to the walls, representing the translation velocities 
of the walls. Finally, Q(f, g) is the Boltzmann collision operator given by 

2n 

fo 
x [f(v') g(v'~) +g(v') f(v'~)-f(v) g(vl) -g(v) f(vl)] (2.4) 
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with B(lv-v~ ], 0) the scattering cross section and v, v], v', v'~ the incoming 
and outgoing velocities in a collision with impact parameter n ~ S 2 corre- 
sponding to the polar and azimuthal angles 0 and go and polar axis parallel 
to v - v ] .  We assume hard molecular interactions with force depending on 
the interparticle distance r as r -k, k/> 5, with Grad angular cutoff. ~4) This 
implies that 

B ( [ v - v l  l, 0) ~ I v - v ,  I p h(O) (2.5) 

with f l = ( k - 5 ) / ( k - l )  and h(O) a bounded continuous function. The 
limiting case k = co, fl = 1 is the hard-sphere interaction discussed in refs. 
I and 2. In this paper we will deal with finite k's and hence with 0 ~< fl < 1. 
Of course the arguments are valid also for f l=  1, but in this case they 
provide weaker results than those already obtained in refs. 1 and 2. 

We will use the following norms, for integers p > 0: 

[flp = sup sup (1 + v2) p/2 If(Y, v)l 
y ~ [ - l , I ]  v E R  3 

(2.6) 

Let q =max{ [FI, I T + -  T_ l, [ U + -  U 1}. Our result is summarized 
as follows. 

T h e o r e m  2.1. There are positive e0, Po, and qo and a constant c 
such that for e < Co, q < qo, and p >po there is a solution f "  to the bound- 
ary value problem (2.1) such that, denoting by M the Maxwellian, 

M ( y , v ) -  P(Y) exp[  [(v'--u(Y))2+Vy+(V~--w(Y))2]] 
[ 2nT(y) ] 3/2 2T(y) (2.7) 

then 

If  ~ - Mlp <~ ce (2.8) 

provided that p, u, w, and T are the density, the nonvanishing components 
of the velocity field, and the temperature solving the Navier-Stokes bound- 
ary value problem 

dk--;(pT)=O, -~y q(T) + p F = 0 ,  ~yy r/(T) = 0  

d dr (a.?" + (dw?'] j j=0  

u(_+ 1)= U+.~., w(+_I)=U+_.=, T ( + I ) =  T+ 

(2.9) 
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with r/(T) and K(T) the viscosity coefficient and the heat conductivity, 
respectively, corresponding to the collision cross section B([v--v,I, 0). 
Furthermore, the solution is unique in a suitable class which will be 
specified later. 

Remark. The bound (2.8) in terms of the norm (2.6) implies just 
polynomial decay of the solution i f ,  a much weaker result than the one 
obtained for hard spheres in refs. 1 and 2. This is a consequence of the 
method adopted here and it is difficult to get a better decay with the pre- 
sent approach based on a decomposition into low and high velocities. We 
note, however, that in the case F--O the method used in refs. 1 and 2 
works for hard potentials and exponential decay follows for any fl e [0, 1 ]. 

3. OUTLINE OF THE PROOF 

The proof of Theorem 2.1 is based on a bulk + boundary layer expan- 
sion with the remainder. The present setup only affects the remainder part, 
hence most of this section is taken from ref. 1, and we refer to it for the 
details. We write f f  as 

6 

i f = M +  ~ f,,+e3fR (3.1) 
I t =  J 

with M the Maxwellian (2.7) with parameters satisfying (2.9). Moreover, 
f,, = B, + b, + + b,7 with B, and b, + the solutions of the equations 

OB._I FOB"-2 
Vy ~ + Ov x 

= 5fB, + ~" Q(Bk, B,,) 
k.m>>, l . k + m = n  

0 + F o ~ b ,  + , - _  

= ~+_ b,~ + 2Q(AM+_, b,~_~ ) 

(3.2) 

"+ Z [2Q(Bi, b f ) + Q ( b ? , b + ) + Q ( b T , b f ) ]  
i.j>~ 1, i + j = n  

f , (  _ 1, v) = ~,+ A~t+(v) + y,~(v) 

(3.3) 

f ,  
v, o, = ! j  dv Vyf,,(+_ 1, v) 

vj, >< O 
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H e r e B  o = M , B  ] = 0 ,  b ~ = b  -+ =0 .  T h e y  -+ - -1 are the space variables scaled 
as y-+ = e-~(1 + y ) ,  M+_ is the Maxwellian (2.7) evaluated in _+1, Y,7.~+ - 
b,~(2e - l ,  v), and 

s =2Q(M,f), ~ + f  =2O(M+_,f) (3.4) 

The remainder  has to solve the boundary  value problem 

v"'~y + e F ~  =l  ~ fg+ ~lfR+e~-Q(fg' 

6 

fR(+l,v)=o~~M+(v) ~ e ''-~ + _ + _ - -y,;?.~ for v y X 0  (3.5) 

;' fo ;a dvvyfR(v,v)=O, dy dV fR(y,v)=O 
3 " - - 1  3 

with s ~ to be chosen to satisfy (3.5)3, 
AM+_ =e-I(M-M+_), and 

A=--  v , - - + e F - - + F  +[2Q(AM§ b; - ) ]  
"' Oy Ov x - '  

+ y" ek+ .. . .  7Q(f~, f,,,) (3.6) 
I ~<k.m~<6,  k + m > ~ 7  

The properties of the f,, are summarized in the following proposi t ion,  
which is taken from ref. 1. 

P r o p o s i t i o n  3 .1 .  Let q be a sufficiently small. Then  there are 
unique smooth  functions p, T, u, and w satisfying (2.9), with derivatives of 
order  k bounded by C,q. Moreover ,  it is possible to determine uniquely 
the functions B,, and b,~, n =  1 ..... 6, satisfying (3.2) and (3.3) so that 
f,=B,,+b,++b,7 satisfies ~]_ldy~dvf,,=O and the condit ion 
~n3 dv Vyf,, = 0 for any y ~ [ - 1, 1 ]. Fur thermore ,  for any positive integer r 
there is a constant  c such that  

IM-I/2Bn [r < cq 

IMp_ t/Zb,~-(e-~(1 -T- y) )  exp[  - a e - 1 ( 1  T- y ) ]  Ir < cq 

for some constant  a > 0. Finally, the function A in (3.6) satisfies 

(3.7) 

dvA=O for y ~ [ - 1 , 1 ] ,  Aexp(__~_~,v2}/1 \ <cq (3.8) 
JR 3 ~ 'q'lff' / r 

for any 0 > sup,,~t_],  1] T(y). 
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The solution fR of (3.5) is sought in the f o r m f R = I ( R ) M + R  with 
I (R)= - - m - '  I1_1 dy IR3dv R(y,  v). After choosing e~- =(T_/2zr) I/'- 
pl_ I(R), the boundary value problem (3.5) is equivalent to 

OR OR 1 
v.,, ~y + er-~v, " = -~ s + Jl:R + e2Q_.(R, R) + e3A 

R(--1, v ) = ~ - ,  vy>0; R(1, v )= f lRM+(v)+~  +, v,,<O (3.9) 

fn3 dv vy R = O, y �9 [ - 1, 1 ] 

with 

jI/'R=~_q~IR + I(R) [ ~ ". 
t ~ 2  

e"-I s + s -- eF~v,  " 

Q.(R, R) = Q(R, R) + 2I(R) s 

~-t- 6 n - - 3  + = -Y'-,= I e ~,7.~, and fir depending on c~ + and ct~-. 
Once ~R has been chosen as before to satisfy the normalization condi- 

tion, the parameter fir is free and can be chosen to satisfy the vanishing net 
flow condition (3.9)3. Hence we put 

P~= I, v."R( l' v) + I, v-"(+ 
) :>0 'y-~O 

(3.1o) 

The solution to the nonlinear boundary value problem (3.9)-(3.10) is 
constructed using the following iterative procedure. We define R,, for 
n/> 1, as the solution of the problem (3.9)-(3.10) with Q(R, R) replaced by 
O.(R ,_ I ,R ,_ I )  and R0=0.  The convergence of the procedure is conse- 
quence of good estimates for the linear problem obtained from (3.9)-(3.10) 
replacing eA + OAR,,_ i, R,, _ i ) with a given source D: 

OR OR 1 
Vy-~y + eF ~vx=-~ .LPR +.A:R + e'-D 

R ( - 1 ,  v ) = ( - ,  Vy>0; R(1, V)=f lRI~+(V)+(  +, vy<O (3.11) 

fR3dvv:,R=O, y e [ - 1 ,  1] 
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The solution of the problem (3.11)-(3.10) requires the decomposition into 
low- and high-velocity parts. Here is the basic modification of the method 
of ref. 1. For any integer s~> 1 we put Ps(v)= (1 + v2) -'~/2 and 

R = x / ~  g + Psh (3.12) 

In ref. 1, instead of P~ there is a Maxwellian M~,/2 with sufficiently high 
temperature. Here g and h are the low-velocity and the high-velociO~ parts 
of the solution, respectively. They are defined as the solutions of the follow- 
ing linear boundary value problems: 

v.,,~y+eF + ( p + e F p ' ) ~ , = e - t L g + e - J z ~ . a - l K ~ h + N l ~ , + A  ~ 
A" (3.13) 

g(1, v)=flg)Q+(v)M-t/2(1,  v), vy<O; g ( - 1 ,  v)=O, vy>O 

Oh Oh 
v,. z-- + e F - -  + eFpl, h + (lt + eFlt') a(g + g~) 
-03, Ov,. 

= e - t ( - - v +  Z~,K.,.) h + N.,.[a(g +g2) ] +h 

+ e[ N!,.21~ + AA~ + e2d] (3.14) 

/7(1, v)=P.,Tl[(+(v)+flhM+(v)] ,  Vy<0 

h( - 1, v) = P,7' ( - (v ) ,  Vy>0 

The notation used in (3.13)-(3.14) is the following. For 0~=0 ..... 4, 
q G = ~ , M  1/2 with ~ the collision invariants 1, v.,., Vy, v:, v2/2, suitably 
orthonormalized in L2(dv). The function g,_ is the component of g along 
qJ2, g=Z~#2P~(Y) ~ is the part o fg  along the other collision invariants, 
and g is the part of g orthogonal to the collision invariants, so that 
g = g + ~ + g 2 .  Here y~,(v) is the characteristic function of the set 
{ U ~  3 [ zYZ~y 2} and )~,= 1 --Zr- Moreover, 

L f  = M-U22Q(M, M ,/zf) = ( _ v + K) f 

L, . f  = P7  '2Q(M, P s f )  = ( - v + Ks) f 
(3.15) 

flg=f~ dv vyMU2g(1, v) 
y>O 

,y>O < 0  " 

(3.16) 
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d = P T I D ,  

1 , 1 
p = Vy ~ 0.,, log M, ~t = ~ 0,,.< log M 

/t~. = 0,,< log P~., 
{'M~ U z 

tp./ 
b,+ =b+M~_ t/2, N s f  = P T I j V ' ( P , f )  

(3.17) 

(3.18) 

and 

{{6 7 ( 2 )  ^ - -  I n - - 2  N~. g=2P, .  Q Y' e 'f,,, (MI/2~+I(MI/2~) M) 

-- 2Fp'I(M 1/2~,) M }  (3.19) 

N 1~ = 2M-1/2{ Q[ B1, M ,/2~] + Q[ b ? ,  (M ,/2~ + I (M ,/2~) M)]  } 

A~ = M-1/2 2 Q [ ~ ~- M ~/2, ( M  1/2~ + I ( M  l/zg) M) ] 

AAg = - PZ ~ 2Q[ b ~- A 'M + , ( M 1/2~ + I( M ,/2~ ) M)] 
(3.20) 

A'M + = e - l ( M ' / 2 -  Mt/+ 2) 

We notice that p~,. is a bounded function of v for any positive s. In ref. 1 the 
corresponding function p ,  = �89 log M .  grows linearly in v. This is the 
main advantage of the decomposition (3.12) compared to the one used in 
ref. 1. In several situations we will use the following properties of the linear 
Boltzmann operator L. Here ( . , . )  is the scalar product in L_,(R 2, dr). We 
have 

( f , [ - L ] f ) > ~ c ( f ,  vf), vo(l+lvl)a<~v(y,v)<~vl(l+lvl) p (3.21) 

for any y e ( -  1, 1 ) and some suitable positive constant c. This suggests 
that we consider the weighted L2-norm 

Ilfll z = f dy dv (1 + Ivl )P f2(y,  v) (3.22) 
Je - - I . I ] •  3 

In particular, the scalar product (h, lz,h) is bounded in this norm when 
fl = 1 (hard spheres), while it is not for fl < 1. On the other hand, the scalar 
product (h, pl, h) is bounded for any positive fl and for any s > 0 .  The 
estimate of the low-velocity part g is not seriously affected by the replace- 
ment of M ~/2 by Ps. In fact next proposition is basically taken from ref. 1. 
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Proposition 3.2. There exist positive constants eo > 0, q0 > 0, and 
C~. > 0 such that for e < eo and q < qo the solution to Eqs. (3.13) satisfies the 
bound 

IIg2 II +~  Ilgll + z I1~11 ~< C,. Ilhll (3.23) 

The proof of the proposition is exactly as in ref. 1. The only change is 
in the estimate of the term X~,tr-~Ksh, which requires the estimates for Ks 
presented below and used in much more substantial way in the estimate of 
h. We omit the details. In next section we will prove the following result. 

Proposition 3.3. There are eo > 0, qo > 0, Y0, and s o > 0 such that 
for e<eo ,  q<qo, Y>Yo, and S>So, the solution h of the problem (3.14) 
satisfies the bound 

Ilhll < c~ 3 lid(1 + Ivl)-#ll +ce' /2{ Ih_ I +  Ih+ I} (3.24) 

Propositions 3.2 and 3.3 provide L 2 bounds for g and h and hence 
weighted L_~ bounds for R. Using the regularizing properties of the inverse 
of the transport operator and of the operator K, it is possible to enhance 
such bounds to weighted L~ bounds for g, h, and R. This follows exactly 
as in ref. 2; we omit the details. In conclusion we have proved the following 
result. 

Theorem 3.4. There are e 0 > 0, q0 > 0, Yo, and So > 0 such that for 
e<eo ,  q<qo, Y>~o, and S>So, the solution of the boundary value 
problem (3.11)-(3.10) satisfies the bound 

IRI.~ ~ ce '/2 IDI.,._/j + ce-2( IC- Is + I( + 1.3 (3.25) 

The above theorem is all we need to prove the convergence of the 
sequence R, and hence Theorem 2.1. We note that the above theorem also 
implies uniqueness of the solution f~ in the class of the funct ionsfsuch that 
e - 3 + ~ l f - M - e f t - e 2 f z ] p  is bounded uniformly in c for ~<1 /2  and 
P >Po. We refer to ref. 1 for details. 

4. P R O O F  OF P R O P O S I T I O N  3.3 

For the proof of Proposition 3.3 we will use the following estimates for 
the collision operator. We decompose the collision operator into gain loss 
parts as Q ( f , g ) = J ( f , g ) + J ( g , f ) - g S ( f ) .  In particular, we will be 
interested in bounds for 

K s f  = P ~Yl[ J(M, P.,f) + J(P, .f ,  M) - MS(Ps f )  ] 
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Let L q be the space of the measurable real functions f(v) on R s such that 
( I + v'-) ~/2 f(o) is in Lq(R 3, dr) with norm 

[ f l  q .~ = aa~3 dv If(v)l q (I + 122) qs/2 

P r o p o s i t i o n  4.1. Given g, let 
IS(f)l. Then there are constants C and 
s-* oo such that 

H f  = IJ(f, g)l + IJ(g, f ) l  + [g[ " 
Cs and a function 6(s )~O as 

I1(1 + Ivl)-a~,H(f)ll2..,.~6(s) ILgll ~ Ilfl12..,-+ C(1 + ),)-a/2 [llgll, Ilfll2..,.+a/2 

+ (llgllz.~.+4 + [Igll=.~+a)] Ilfl[2,.,- (4.1) 

In particular, for g =  M and f replaced by P~.f, recalling (3.22), it follows 
that 

II(1 + Ivl)-ag,,gj[lz.o<~fa(s)[Ifll  +6".,.(1 +y)-a/2 Ilfll (4.2) 

Before giving the proof of Proposition 4.1, we conclude the proof of 
Proposition 3.3. The argument is close to the one of ref. 2. Below we use 
the notation ( f ) =  JR3 dv f(v). Multiply Eq. (3.14) l by h and integrate on 
[ - I, I ] x ~3. After a few integrations by parts one is left with 

+ f ay (eFlt;h z) + f dy ( (p  + eFp') ha(g+ g2)) J 

= f dy dv h{e- i (  - v  +s h + Ns[cr(g+g2) + h] 

+ e(N!~2'~ + AA~) + e2d} (4.3) 

with 3 = ( vyh2( 1, v) ) - ( vyh2( - 1, v) ). Using the boundary conditions for 
h, we have 

~, Iv,, 
.i "~0 

ha(-l, v) +~, Ivylh2(1, v)+ <.J+c(fl~,+lh+12+lh_l 2 ) 
,y> 0 

(4.4) 

It can be checked as in ref. 1 that 

IL <~c(e ~/2 F lv - ' [z+e-%KJ~]  JI + Ih_ I+  Ih+ I) (4.5) 

822/84/3-4-35 
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z = - eF/~'~h + (~ + e&t ' )  ~r(g + g,_) 

-- Ns[ r r (g+g2)  + h i  + e[N~'-'~, + AA~,] + e2d 

h+ =(+_ps 

I h + l - -  sup Ih+(v)l  
vy~O 

(4.6) 

Therefore 

J>~ -c(eflv-~[Z+e-'~,gsh]ll+lh l2+lh+l 2) (4.7) 

Using this bound in (4.3) and the estimate (3.21)2, we obtain 

vollhll2<<.ce2(llv-~[Z+e-~,gsh]l[2+e(lh_12+lh+l 2) (4.8) 

One can use (4.1) and Proposition 3.2 to get the bound, for e small enough, 

e 2 II v - ' Z l l  2 ~< cr(q IIh II 2 +/~6 II V--ldl[ 2) 

where the constant G, depends on y. Using (4.2), we get 

Ilhll 2 { v 0 -  J(s) c , -  C(l + y ) - a - c r q  } ~<e 6 IIv-~dll2+e(lh 12--} - Ih+ 12) 

(4.9) 

We choose s such that clJ(s)~vo/4, then y such that C(1 +},)-a~<Vo/4, 
and finally q such that c~,q <<. Vo/4. With these choices we conclude that 

Ilhll ~ c/~3 Ilv-'dll + el/2(lh_ 1+ Ih+ [) (4.10) 

and hence Proposition 3.3 is proved. 

Proof of Proposition 4. 1. In ref. 3 an L~  estimate similar to the one 
of Proposition 4.1 is proved. Therefore, by interpolation theorems, it is 
enough to get an L~ bound. To this end, we introduce 

](f,g)(v)= f f(v')g(v'l)sinOcosOlv-vlladOdq~dvl (4.11) 
3 ~0 

The quantities we have to estimate are in fact bounded by ](f, g). We only 
discuss the estimate of the term 

( 1 g) 
1 +lvl) a~ff(f' ,,~ 
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while the others are obtained with simpler arguments. We divide the 
integration domain for the velocity into three parts: 

Z = {Iv'l < 6  Ivl and Ivll <r/Ivl} 

B= {Iv'[ < 5  [v[ and Ivl[ >~11 Iv[} 

c = {lo' l  i> 6 [vl w i t h  6 ~ t/} 

Moreover, we denote by ]A the part of J corresponding to the integra- 
tion domain A and so on. In A the following estimates hold: 

I v -  v'~ I < ('J + 6)  Ivl 

IV'll > (1 --5) Ivl 

I v - v ' l  > ~ ( 1 - ~ )  Iv~l 

[v - vl [/J < (1 + r/) p Ivl p (4 .12)  

From (4.12)~.2 it follows that the range of 0 is the interval [0, 0max] 
with 0m,x ~< (r/+ 5)/( 1 -- (5) < 3r/, after choosing 6~ small enough. We use the 
notation 

h(O) = Isin(0) cos(0)l, 

Moreover, from (4.12)1.2.4, we obtain 

ph(r/) = Ii t h(O) dO 

(1 +t/)  p 1 ~ , l V - - V l l a P T ' ( v ) < _ _  
(1 + Ivl) p -1  , Ps (v~) ( 1 - 5 ) "  

The change of variables dv dvl ---, dr' dv'~ then provides the bound 

1)li,~yJA(g, f)  
(l+lvl ~,.,. 

<~ C 
ph(3r/). J fR3 J fR3 g(v')f(v'~) Pf'(v'~) dv dr, 

(1 

C 
= (1 - 6)-' ph(3rl) Ilgll t" Ilfll ~ (4.13) 
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To estimate ]8, we note that I v -  v~ I p = Iv ' -v l  p (cos 0) -p. The energy 
t2  = 0 2  .q- i)2 - -  1)r2 ~ conservation and the definition of the set B imply v, 

(1 + q 2 - 6 2 )  v 2. Hence 

-- --1 z1,P , + a/2( v) 1 
--1 , ~ 0 2 ) ( s  + p/2) /2 P..p/2(v,) (I + r f l -  

Again the change of variables dv dr1 --, dr' dv'~ then provides the bound 

1 1. (l + lvl) agry~(g' f )  , 

1 C 
~<(1 +7)  p/2 (1 "~-r]2--02) s+fl/2 Ilgll, Ilflll.(s+av,_ (4.14) 

In the set C we have P.,(v')P,(v)-1 ~< CO-'. Multiplying and dividing 
by Pr(v') for some r > 0 and using the Holder inequality, we have 

( 1 f )  q 1 + Ivl) p ;?~(1 +/32)s/2 ] c ( g ,  q 

C I fR f f2,~[,~/2 
<~Osq/2(l+7) aq/2 31v'lq'an3Jo ao g(v')P~q](V') 

xf (v] )  PL'(v't) h(O) dO drp dv, 

3 "0 P(r_a/2)q,(V )P(sl_#)q,(O-- l)])  

"~ q/q' 

dO d~o dvj ) dv 

(4.15) 

The last integral converges for min(r, s) t> fl + 3( 1 - 1/q). Hence we choose 
r = 4 and below s is assumed to satisfy the bound. 

Combining estimates (4.13)-(4.15), we get 

(1 + Iol) p'~yJ(f' g) ,., 

~p , (3q)  ~ Ilglll Ilfll ~.s 

+ C - -  
1 (  1 

(I +y)#/2. (1 +r12-62) (m)(~+pm-' Ilgll, Ilfll,..,.+p/2 

+ EIIgll,,4§ Ilgll~,~+a] [Ifll,,~) 
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We choose r/= (x /~) - '  and fi = s -l .  Therefore 62~< ~/2/2 = 1/(2s). Hence 

r / 2 / +  ] - (]/2)(s + #/2) 
(l+q2-62)+l-ct/21c~+P/z~ 1+-~  <~ C 

Moreover, ph(3q) ~< c~/2. Then 

ph (3 r / ) -  1 1 
(1--6)  ~ c  S (1 - 1/s) ~ 

< cs - l  

This proves Proposition 4.1 with f i (s)=s  -1. 
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